

- 1. Find the *y*-intercept, the equation of the axis of symmetry, and the *x*-coordinate of the vertex for $f(x) = 3x^2 12x + 4$. Then graph the function by making a table of values. (Lesson 5-1)
- **2. MULTIPLE CHOICE** For which function is the *x*-coordinate of the vertex at 4? (Lesson 5-1)
 - A $f(x) = x^2 8x + 15$ B $f(x) = -x^2 - 4x + 12$ C $f(x) = x^2 + 6x + 8$
 - **D** $f(x) = -x^2 2x + 2$
- **3.** Determine whether $f(x) = 3 x^2 + 5x$ has a maximum or minimum value. Then find this maximum or minimum value and state the domain and range of the function. (Lesson 5-1)
- **4. BASEBALL** From 2 feet above home plate, Grady hits a baseball upward with a velocity of 36 feet per second. The height h(t) of the baseball *t* seconds after Grady hits it is given by $h(t) = -16t^2 + 36t + 2$. Find the maximum height reached by the baseball and the time that this height is reached. (Lesson 5-1)
- **5.** Solve $2x^2 11x + 12 = 0$ by graphing. If exact roots cannot be found, state the consecutive integers between which the roots are located. (Lesson 5-2)

NUMBER THEORY Use a quadratic equation to find two real numbers that satisfy each situation, or show that no such numbers exist. (Lesson 5-2)

- **6.** Their sum is 12, and their product is 20.
- **7.** Their sum is 5 and their product is 9.
- **8. MULTIPLE CHOICE** For what value of *x* does $f(x) = x^2 + 5x + 6$ reach its minimum value? (Lesson 5-2)

F
$$-5$$
 H $-\frac{5}{2}$ **G** -3 **I** -2

9. FOOTBALL A place kicker kicks a ball upward with a velocity of 32 feet per second. Ignoring the height of the kicking tee, how long after the football is kicked does it hit the ground? Use the formula $h(t) = v_0 t - 16t^2$ where h(t) is the height of an object in feet, v_0 is the object's initial velocity in feet per second, and *t* is the time in seconds. (Lesson 5-2)

Solve each equation by factoring. (Lesson 5-3)

10.	$2x^2 - 5x - 3 = 0$	11. $6x^2 + 4x - 2 = 0$
12.	$3x^2 - 6x - 24 = 0$	13. $x^2 + 12x + 20 = 0$

REMODELING For Exercises 14 and 15, use the following information. (Lesson 5-3)

Sandy'closet was supposed to be 10 feet by 12 feet. The architect decided that this would not work and reduced the dimensions by the same amount x on each side. The area of the new closet is 63 square feet.

- **14.** Write a quadratic equation that represents the area of Sandy's closet now.
- **15.** Find the new dimensions of her closet.
- **16.** Write a quadratic equation in standard form with roots -4 and $\frac{1}{3}$. (Lesson 5-3)

Simplify. (Lesson 5-4)

17. $\sqrt{-49}$	18. $\sqrt{-36a^3b^4}$
19. $(28 - 4i) - (10 - 30i)$	20. i^{89}
21. $(6-4i)(6+4i)$	22. $\frac{2-4i}{1+3i}$

23. ELECTRICITY The impedance in one part of a series circuit is 2 + 5j ohms and the impedance in another part of the circuit is 7 - 3j ohms. Add these complex numbers to find the total impedance in the circuit. (Lesson 5-4)

Series Circuit

